Computer simulations of domain growth and phase separation in two-dimensional binary immiscible fluids using dissipative particle dynamics.

نویسندگان

  • Coveney
  • Novik
چکیده

We investigate the dynamical behavior of binary fluid systems in two dimensions using dissipative particle dynamics. We find that following a symmetric quench the domain size R(t) grows with time t according to two distinct algebraic laws R(t) ∼ t: at early times n = 1 2 , while for later times n = 2 3 . Following an asymmetric quench we observe only n = 1 2 , and if momentum conservation is violated we see n = 1 3 at early times. Bubble simulations confirm the existence of a finite surface tension and the validity of Laplace’s law. Our results are compared with similar simulations which have been performed previously using molecular dynamics, lattice-gas and lattice-Boltzmann automata, and Langevin dynamics. We conclude that dissipative particle dynamics is a promising method for simulating fluid properties in such systems. Typeset using REVTEX 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spinodal decomposition of off-critical quenches with a viscous phase using dissipative particle dynamics in two and three spatial dimensions

We investigate the domain growth and phase separation of hydrodynamically correct binary immiscible fluids of differing viscosity as a function of minority phase concentration in both two and three spatial dimensions using dissipative particle dynamics. We also examine the behavior of equal-viscosity fluids and compare our results to similar lattice-gas simulations in two dimensions.

متن کامل

Microphase separation induced by interfacial segregation of isotropic, spherical nanoparticles.

In a recent experiment by Chung et al. [Nano Lett. 5, 1878 (2005)] and simulation by Stratford et al. [Science 309, 2198 (2005)] on immiscible blends containing nanoscale particles, it was shown that the phase separation of the two polymers can be prevented as a result of the aggregation of the nanoparticles at the interfaces between the two polymers. Motivated by these studies, we performed la...

متن کامل

Three-dimensional hydrodynamic lattice-gas simulations of domain growth and self-assembly in binary immiscible and ternary amphiphilic fluids.

We simulate the dynamics of phase assembly in binary immiscible fluids and ternary microemulsions using a three-dimensional hydrodynamic lattice-gas approach. For critical spinodal decomposition we perform the scaling analysis in reduced variables introduced by Jury et al. [Phys. Rev. E 59, R2535 (1999)] and by Bladon et al. [Phys. Rev. Lett. 83, 579 (1999)]. We find a late-stage scaling expone...

متن کامل

Dissipative particle dynamics for interacting multicomponent systems

We formulate the dissipative particle dynamics technique for multicomponent interacting systems and show that the important property of detailed balance is satisfied. There is currently growing interest in the development of ‘mesoscale’ modelling and simulation methods for describing the complex dynamical behaviour of many kinds of soft condensed matter, whose properties have defied conventiona...

متن کامل

Dissipative Particle Dynamics simulation hydrated Nafion EW 1200 as fuel cell membrane in nanoscopic scale

The microphase separation of hydrated perfluorinated sulfonic acid membrane Nafion was investigated using Dissipative Particle Dynamics (DPD). The nafion as a polymer was modelled by connecting coarse grained beads which corresponds to the hydrophobic backbone of polytetrafluoroethylene and perfluorinated side chains terminated by hydrophilic end particles of sulfonic acid groups [1, 2]. Each f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 54 5  شماره 

صفحات  -

تاریخ انتشار 1996